Source code for pymgipsim.VirtualPatient.Models.Multiscale.BodyWeight.Model

from pymgipsim.Utilities.units_conversions_constants import UnitConversion
from .States import States
from .Parameters import Parameters
from .Inputs import Inputs
from pymgipsim.Utilities.Timestamp import Timestamp
from pymgipsim.VirtualPatient.Models.Model import BaseModel
from pymgipsim.Utilities.Scenario import scenario
from pymgipsim.InputGeneration.signal import Signal
import numpy as np
from numba import njit

[docs] class Model(BaseModel, UnitConversion): name = "Multiscale.BodyWeight" glucose_state = None def __init__(self, sampling_time): self.inputs = Inputs() self.parameters = Parameters() self.states = States() self.initial_conditions = States() self.time = Timestamp() self.sampling_time = sampling_time
[docs] def preprocessing(self): """ This is going to function similar to 'initialize' the way I had it before. output_equilibrium does the initial condition calculation so this will just call that static method for this model. The values in self.initial_conditions can be assigned individually based on that the output_equilibrium (e.g. self.initial_conditions .Sg = 0) """ self.initial_conditions.as_array = self.output_equilibrium(self.parameters.as_array, self.inputs.as_array) self.states.as_array = np.zeros((self.parameters.as_array.shape[0], self.initial_conditions.as_array.shape[1], self.time.as_unix.size))
@staticmethod @njit(cache = True) def model(states, time, parameters, inputs) -> np.ndarray: BW = states.T EI, EE, UGE = inputs.T BW0, beta, EI0, EE0, rho, K = parameters.T dBWdt = ((EI - EI0) - (K + EE)*(BW - BW0)/(1-beta) - (EE - EE0)*BW0/(1-beta) - UGE)/rho return dBWdt.reshape(-1,1)
[docs] @staticmethod def output_equilibrium(parameters: np.ndarray, inputs: np.ndarray) -> np.ndarray: """ This calculates the steady state values for each state variable """ BW0, _, _, _, _, _ = parameters.T return BW0.reshape(-1,1)
@staticmethod def from_scenario(scenario_instance: scenario): time = np.arange(scenario_instance.settings.start_time, scenario_instance.settings.end_time, scenario_instance.settings.sampling_time ) model = Model(sampling_time=scenario_instance.settings.sampling_time) events = scenario_instance.inputs.energy_intake energy_intake = Signal( time=time, sampling_time=scenario_instance.settings.sampling_time, duration=events.duration, start_time=events.start_time, magnitude=events.magnitude ) events = scenario_instance.inputs.energy_expenditure energy_expenditure = Signal( time=time, sampling_time=scenario_instance.settings.sampling_time, duration=events.duration, start_time=events.start_time, magnitude=events.magnitude ) events = scenario_instance.inputs.urinary_glucose_excretion urinary_glucose_excretion = Signal( time=time, sampling_time=scenario_instance.settings.sampling_time, duration=events.duration, start_time=events.start_time, magnitude=events.magnitude ) model.inputs = Inputs( energy_intake=energy_intake, energy_expenditure=energy_expenditure, urinary_glucose_excretion=urinary_glucose_excretion ) model.parameters = Parameters(np.asarray(scenario_instance.patient.model.parameters)) model.time = Timestamp() model.time.as_unix = time return model
[docs] @staticmethod def from_scenario_multiscale(scenario_instance: scenario): """ Generate Parameters """ model = Model(sampling_time=scenario_instance.settings.sampling_time) time = np.arange( scenario_instance.settings.start_time, UnitConversion.time.convert_minutes_to_days(scenario_instance.settings.end_time), scenario_instance.settings.sampling_time ) """ Convert time to days """ end_time_in_days = UnitConversion.time.convert_minutes_to_days(scenario_instance.settings.end_time) model = Model(sampling_time=scenario_instance.settings.sampling_time) sampling_time = np.full_like(scenario_instance.inputs.daily_energy_intake.start_time, scenario_instance.settings.sampling_time) energy_intake = Signal( time=time, sampling_time=scenario_instance.settings.sampling_time, duration=sampling_time, start_time=scenario_instance.inputs.daily_energy_intake.start_time, magnitude=scenario_instance.inputs.daily_energy_intake.magnitude ) energy_expenditure = Signal( time=time, sampling_time=scenario_instance.settings.sampling_time, duration=sampling_time, start_time=scenario_instance.inputs.daily_energy_expenditure.start_time, magnitude=scenario_instance.inputs.daily_energy_expenditure.magnitude ) urinary_glucose_excretion = Signal( time=time, sampling_time=scenario_instance.settings.sampling_time, duration=sampling_time, start_time=scenario_instance.inputs.daily_urinary_glucose_excretion.start_time, magnitude=scenario_instance.inputs.daily_urinary_glucose_excretion.magnitude ) model.inputs = Inputs( energy_intake=energy_intake, energy_expenditure=energy_expenditure, urinary_glucose_excretion=urinary_glucose_excretion ) model.parameters = Parameters(np.asarray(scenario_instance.patient.mscale.parameters)) model.time = Timestamp() model.time.as_unix = time return model